Math 55 Discussion problems 9 Feb

1. Show that if a, b, c, and m are integers such that $m \geq 2, c>0$, and $a \equiv b(\bmod m)$, then $a c \equiv b c(\bmod m c)$.
2. Show that if n is an integer then $n^{2} \equiv 0$ or $1(\bmod 4)$.
3. Show that the sum of the squares of two odd integers cannot be the square of an integer.
4. Prove that there are no solutions in integers x and y to the equation $x^{2}-5 y^{2}=2$. [Hint: Consider this equation modulo 5.]
5. Show that a positive integer is divisible by 11 if and only if the difference of the sum of its decimal digits in even-numbered positions and the sum of its decimal digits in odd-numbered positions is divisible by 11 .
6. How many zeros are at the end of the binary expansion of $\left(100_{10}\right)!$?
7. Find the prime factorization of each of these integers.
(a) 39
(c) 101
(e) 289
(b) 81
(d) 143
(f) 899
8. Show that if a and b are both positive integers, then $\left(2^{a}-1\right) \bmod \left(2^{b}-1\right)=2^{a \bmod b}-1$.
